2017年浙江省高考数学试题试卷(word版)+答案答案解析

2017年浙江省高考数学试题试卷(word版)+答案答案解析1 2017年浙江省高考数学试题试卷(word版)+答案答案解析2 2017年浙江省高考数学试题试卷(word版)+答案答案解析3 2017年浙江省高考数学试题试卷(word版)+答案答案解析4 2017年浙江省高考数学试题试卷(word版)+答案答案解析5 2017年浙江省高考数学试题试卷(word版)+答案答案解析6 2017年浙江省高考数学试题试卷(word版)+答案答案解析7 2017年浙江省高考数学试题试卷(word版)+答案答案解析8 2017年浙江省高考数学试题试卷(word版)+答案答案解析9 2017年浙江省高考数学试题试卷(word版)+答案答案解析10
试读已结束,还剩16页未读,您可下载完整版后进行离线阅读

《2017年浙江省高考数学试题试卷(word版)+答案答案解析》是由用户上传到老师板报网,类型是数学试卷,大小为472.5 KB,总共有26页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2017年浙江省高考数学试题试卷(word版)+答案答案解析文字介绍:2017年浙江省高考数学试卷 一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知集合P={x|1﹣<x<1},Q={x|0<x<2},那么P∪Q=(  )A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(5分)椭圆+=1的离心率是(  )A.B.C.D.3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(  )A.+1B.+3C.+1D.+34.(5分)若x、y满足约束条件,则z=x+2y的取值范围是(  )A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(5分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则Mm﹣(  )A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.(5分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的(  )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(  )A.B.C.D.8.(5分)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1p﹣i,i=1,2.若0<p1<p2<,则(  )A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(5分)如图,已知正四面体DABC﹣(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角DPRQ﹣﹣,D﹣PQR﹣,DQRP﹣﹣的平面角为α、β、γ,则(  )A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(5分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则(  )A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=  .12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=  .13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=  .14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是  ,com∠BDC=  .15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是  .16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有  种不同的选法.(用数字作答)17.(4分)已知a∈R,函数f(x)=|x+a﹣|+a在区间[1,4]上的最大值是5,则a的取值范围是  . 三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2xcos﹣2x2﹣sinxcosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15分)如图,已知四棱锥PABCD﹣,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)ex﹣(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1x﹣n≤;(Ⅲ)≤xn≤. 2017年浙江省高考数学试卷参考答案与试题解析 一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知集合P={x|1﹣<x<1},Q={x|0<x<2},那么P∪Q=(  )A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|1﹣<x<1},Q={x|0<x<2},那么P∪Q={x|1﹣<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力. 2.(5分)椭圆+=1的离心率是(  )A.B.C.D.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力. 3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(  )A.+1B.+3C.+1D.+3【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目. 4.(5分)若x、y满足约束条件,则z=x+2y的取值范围是(  )A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过坐标原点时,函数取得最小值,经过A时,目标函数取得最大值,由解得A(0,3),目标函数的直线为:0,最大值为:36目标函数的范围是[0,6].故选:A.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键. 5.(5分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则Mm﹣(  )A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【分析】结合二次函数的图象和性质,分类讨论不同情况下Mm﹣的取值与a,b的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时Mm=﹣|f(1)﹣f(0)|=|a|,故Mm﹣的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤1﹣时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时Mm=f﹣(0)﹣f(﹣)=,故Mm﹣的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时Mm=f﹣(0)﹣f(﹣)=a﹣,故Mm﹣的值与a有关,与b无关综上可得:Mm﹣的值与a有关,与b无关故选:B【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键. 6.(5分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的(  )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题 7.(5分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(  )A.B.C.D.【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题. 8.(5分)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1p﹣i,i=1,2.若0<p1<p2<,则(  )A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【分析】由已知得0<p1<p2<,<1p﹣2<1p﹣1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1p﹣i,i=1,2,…,0<p1<p2<,∴<1p﹣2<1p﹣1<1,E(ξ1)=1×p1+0×(1p﹣1)=p1,E(ξ2)=1×p2+0×(1p﹣2)=p2,D(ξ1)=(1p﹣1)2p1+(0p﹣1)2(1p﹣1)=,D(ξ2)=(1p﹣2)2p2+(0p﹣2)2(1p﹣2)=,D(ξ1)﹣D(ξ2)=p1p﹣12﹣()=(p2p﹣1)(p1+p21﹣)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题. 9.(5分)如图,已知正四面体DABC﹣(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角DPRQ﹣﹣,D﹣PQR﹣,DQRP﹣﹣的平面角为α、β、γ,则(  )A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.可得cosα===.同理可得:cosβ==,cosγ==.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),Q,R,=,=(0,3,6),=(,5,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.则cosα===.同理可得:cosβ==,cosγ==.由已知可得:OE>OG>OF.∴cosα>cosγ>cosβ,α,β,γ为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题. 10.(5分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则(  )A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键. 二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=  .【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故答案为:.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题 12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5,ab= 2 .【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2b﹣2+2abi,可得3=a2b﹣2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2b﹣2+2abi,∴3=a2b﹣2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题. 13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= 16,a5= 4 .【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题. 14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是  ,com∠BDC=  .【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC,再根据S△BDC=S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴S△ABC=BC•AE=×2×=,∵BD=2,∴S△BDC=S△ABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC1=﹣,∴cos∠BDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题 15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是4 ,最大值是  .【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=x﹣+z,则直线y=x﹣+z过M、N时z最小为zmin=1+3=3+1=4,当直线y=x﹣+z与圆弧MN相切时z最大,由平面几何知识易知zmax即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以zmax=×=.综上所述,|+|+|﹣|的最小值是4,最大值是.故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题 16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 660 种不同的选法.(用数字作答)【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题 17.(4分)已知a∈R,函数f(x)=|x+a﹣|+a在区间[1,4]上的最大值是5,则a的取值范围是 (﹣∞,) .【分析】通过转化可知|x+a﹣|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+a﹣|+a≤5,即|x+a﹣|≤5a﹣,所以a≤5,又因为|x+a﹣|≤5a﹣,所以a5﹣≤x+a﹣≤5a﹣,所以2a5﹣≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a5﹣≤4,解得a≤,故答案为:(﹣∞,).【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题. 三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2xcos﹣2x2﹣sinxcosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2xcos﹣2x2﹣sinxcosx=﹣sin2x﹣cos2x=2sin(2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档. 19.(15分)如图,已知四棱锥PABCD﹣,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【分析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.(Ⅱ)求出平面PBC的法向量和,利用向量法能求出直线CE与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)∵四棱锥PABCD﹣,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,设PC=AD=2DC=2CB=2,则C(0,1,0),D(0,0,0),P(1,0,1),E(),A(2,0,0),B(1,1,0),=(),=(1,0,﹣1),=(0,1,﹣1),设平面PAB的法向量=(x,y,z),则,取z=1,得=(1,1,1),∵==0,CE⊄平面PAB,∴CE∥平面PAB.解:(Ⅱ)=(﹣1,1,﹣1),设平面PBC的法向量=(a,b,c),则,取b=1,得=(0,1,1),设直线CE与平面PBC所成角为θ,则sinθ=|cos<>|===.∴直线CE与平面PBC所成角的正弦值为.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题. 20.(15分)已知函数f(x)=(x﹣)ex﹣(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)ex﹣(x≥),导数f′(x)=(1﹣••2)ex﹣﹣(x﹣)ex﹣=(1x﹣+)ex﹣=(1x﹣)(1﹣)ex﹣;(2)由f(x)的导数f′(x)=(1x﹣)(1﹣)ex﹣,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x1﹣⇔(x1﹣)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题. 21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1k﹣),通过令f(x)=(1+x)3(1x﹣),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以kAP==x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+k+,BP:y=﹣x++,联立直线AP、BP方程可知Q(,),故=(,),又因为=(﹣1k﹣,﹣k2k﹣),故﹣|PA|•|PQ|=•=+=(1+k)3(k1﹣),所以|PA|•|PQ|=(1+k)3(1k﹣),令f(x)=(1+x)3(1x﹣),﹣1<x<1,则f′(x)=(1+x)2(24x﹣)=2﹣(1+x)2(2x1﹣),由于当﹣1<x<﹣时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题. 22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1x﹣n≤;(Ⅲ)≤xn≤.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2xn+1x﹣n得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:xn>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则xk>0,那么n=k+1时,若xk+1<0,则0<xk=xk+1+ln(1+xk+1)<0,矛盾,故xn+1>0,因此xn>0,(n∈N*)∴xn=xn+1+ln(1+xn+1)>xn+1,因此0<xn+1<xn(n∈N*),(Ⅱ)由xn=xn+1+ln(1+xn+1)得xnxn+14x﹣n+1+2xn=xn+122x﹣n+1+(xn+1+2)ln(1+xn+1),记函数f(x)=x22x﹣+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此xn+122x﹣n+1+(xn+1+2)ln(1+xn+1)≥0,故2xn+1x﹣n≤;(Ⅲ)∵xn=xn+1+ln(1+xn+1)≤xn+1+xn+1=2xn+1,∴xn≥,由≥2xn+1x﹣n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n1﹣(﹣)=2n2﹣,∴xn≤,综上所述≤xn≤.【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题 

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:26页
  • 大小:472.5 KB
  • 编号:8004
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货