2012年海南省高考(理科)数学真题试卷+答案解析

2012年海南省高考(理科)数学真题试卷+答案解析1 2012年海南省高考(理科)数学真题试卷+答案解析2 2012年海南省高考(理科)数学真题试卷+答案解析3 2012年海南省高考(理科)数学真题试卷+答案解析4 2012年海南省高考(理科)数学真题试卷+答案解析5 2012年海南省高考(理科)数学真题试卷+答案解析6 2012年海南省高考(理科)数学真题试卷+答案解析7 2012年海南省高考(理科)数学真题试卷+答案解析8 2012年海南省高考(理科)数学真题试卷+答案解析9 2012年海南省高考(理科)数学真题试卷+答案解析10
试读已结束,还剩4页未读,您可下载完整版后进行离线阅读

《2012年海南省高考(理科)数学真题试卷+答案解析》是由用户上传到老师板报网,类型是数学试卷,大小为2.15 MB,总共有14页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2012年海南省高考(理科)数学真题试卷+答案解析文字介绍:绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。2.问答第Ⅰ卷时。选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动.用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效.3.回答第Ⅱ卷时。将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。(1)已知集合A={1,2,3,4,5},B={(x,y)|x,则B中所含元素的个数为(A)3(B)6(C)8(D)10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有(A)12种(B)10种(C)9种(D)8种(3)下面是关于复数的四个命题:P1:|z|=2,P2:z2=2i,P3:z的共轭复数为1+i,p4:z的虚部为-1,期中的真命题为(A)p2,p3(B)P1,P2(C)P2,P4(D)P3,P4(4)设12FF是椭圆E:的左、右焦点,P为直线32ax上一点,21FPF是底角为30的等腰三角形,则E的离心率为()(A)12(B)23(C)34(D)45(5)已知na为等比数列,,568aa,则110aa(A)7(B)5(C)-5(D)-7(6)如果执行右边的程序框图,输入正整数(2)NN和实数12,,...,naaa,输出A,B,则(A)A+B为12,,...,naaa的和(B)2AB为12,,...,naaa的算术平均数(C)A和B分别是12,,...,naaa中最大的数和最小的数(D)A和B分别是12,,...,naaa中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)等轴双曲线C的中心在原点,检点在X轴上,C与抛物线的准线交于A,B两点,|AB|=4,则C的实轴长为(A)(B)2(C)4(D)8(9)已知w>0,函数f(x)=sin(x+)在(,π)单调递减。则△t的取值范围是(A)[,](B)[,](C)(O,](D)(0,2](10)已知函数f(x)=,则y=f(x)的图像大致为(11)已知三棱锥S-ABC的所有顶点都在球O的求面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为(A)(B)(C)(D)(12)设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|pQ|最小值为(A)1-ln2(B)(1-ln2)(C)1+ln2(D)(1+ln2)第Ⅱ卷本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。二.填空题:本大题共4小题,每小题5分。(13)已知向量a,b夹角为450,且|a|=1,|2a-b|=,则|b|=(14)设x,y满足约束条件则z=x-2y的取值范围为(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为(16)数列{}满足=2n-1,则{}的前60项和为三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知a.b.c分别为△ABC三个内角A,B,C的对边a(1)求A(2)若a=2,△ABC的面积为求b,c18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。(I)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式。(II)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。(i)若花店一天购进16枝玫瑰花,x表示当天的利润(单位:元),求x的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。(19)(本小题满分12分)如图,之三棱柱ABC-中AC=BC=,D是棱的中点,(I)证明:(II)求二面角的大小(20)(本小题满分12分)设抛物线C:(P>0)的交点为F,准线为I,A为C上的一点,已知以F为圆心,FA为半径的圆F交I于B,D两点。(I)若,的面积为求P的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点m,n距离的比值。(21)(本小题满分12分)已知函数f(x)满足满足f(x)=(I)求f(x)的解析式及单调区间;(II)若f(x),求(a+1)b的最大值请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。(22)(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交于△ABC的外接圆于F,G两点,若CF//AB,证明:(I)CD=BC;(II)△BCD∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形ABCD的顶点都在上,且A、B、C、D依逆时针次序排列,点A的极坐标为(2,)(I)求点A、B、C、D的直角坐标;(II)设P为上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围。(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(I)当a=-3时,求不等式f(x)≥3的解集;(II)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围。第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。(1)已知集合;,则中所含元素的个数为()【解析】选,,,共10个(2)将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有()种种种种【解析】选甲地由名教师和名学生:种(3)下面是关于复数的四个命题:等的真命题为()的共轭复数为的虚部为【解析】选,,的共轭复数为,的虚部为(4)设12FF是椭圆的左、右焦点,为直线32ax上一点,21FPF是底角为30的等腰三角形,则的离心率为()【解析】选21FPF是底角为30的等腰三角形(5)已知na为等比数列,,568aa,则110aa()【解析】选,或(6)如果执行右边的程序框图,输入正整数(2)NN和实数12,,...,naaa,输出,则()为12,,...,naaa的和2AB为12,,...,naaa的算术平均数和分别是12,,...,naaa中最大的数和最小的数和分别是12,,...,naaa中最小的数和最大的数【解析】选(7)如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()【解析】选该几何体是三棱锥,底面是俯视图,高为此几何体的体积为(8)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为()【解析】选设交的准线于得:(9)已知,函数在上单调递减。则的取值范围是()【解析】选不合题意排除合题意排除另:,得:(10)已知函数;则的图像大致为()【解析】选得:或均有排除(11)已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为()【解析】选的外接圆的半径,点到面的距离为球的直径点到面的距离为此棱锥的体积为另:排除(12)设点在曲线上,点在曲线上,则最小值为()【解析】选函数与函数互为反函数,图象关于对称函数上的点到直线的距离为设函数由图象关于对称得:最小值为第Ⅱ卷本卷包括必考题和选考题两部分。第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求做答。二.填空题:本大题共4小题,每小题5分。(13)已知向量夹角为,且;则【解析】(14)设满足约束条件:;则的取值范围为【解析】的取值范围为约束条件对应四边形边际及内的区域:则(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为【解析】使用寿命超过1000小时的概率为三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为超过1000小时时元件1或元件2正常工作的概率那么该部件的使用寿命超过1000小时的概率为(16)数列满足,则的前项和为【解析】的前项和为可证明:三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)已知分别为三个内角的对边,(1)求(2)若,的面积为;求。【解析】(1)由正弦定理得:(2)解得:(lfxlby)18.(本小题满分12分)某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式。(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。【解析】(1)当时,当时,得:(2)(i)可取,,的分布列为(ii)购进17枝时,当天的利润为得:应购进17枝(19)(本小题满分12分)如图,直三棱柱中,,是棱的中点,(1)证明:(2)求二面角的大小。【解析】(1)在中,得:同理:得:面(2)面取的中点,过点作于点,连接,面面面得:点与点重合且是二面角的平面角设,则,既二面角的大小为(20)(本小题满分12分)设抛物线的焦点为,准线为,,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,求坐标原点到距离的比值。【解析】(1)由对称性知:是等腰直角,斜边点到准线的距离圆的方程为(2)由对称性设,则点关于点对称得:得:,直线切点直线坐标原点到距离的比值为。(lfxlby)(21)(本小题满分12分)已知函数满足满足;(1)求的解析式及单调区间;(2)若,求的最大值。【解析】(1)令得:得:在上单调递增得:的解析式为且单调递增区间为,单调递减区间为(2)得①当时,在上单调递增时,与矛盾②当时,得:当时,令;则当时,当时,的最大值为请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。(22)(本小题满分10分)选修4-1:几何证明选讲如图,分别为边的中点,直线交的外接圆于两点,若,证明:(1);(2)【解析】(1),(2)(23)本小题满分10分)选修4—4;坐标系与参数方程已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为(1)求点的直角坐标;(2)设为上任意一点,求的取值范围。【解析】(1)点的极坐标为点的直角坐标为(2)设;则(lfxlby)(24)(本小题满分10分)选修:不等式选讲已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围。【解析】(1)当时,或或或(2)原命题在上恒成立在上恒成立在上恒成立

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:14页
  • 大小:2.15 MB
  • 编号:8135
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货