2010年海南省高考(文科)数学试卷+参考答案

2010年海南省高考(文科)数学试卷+参考答案1 2010年海南省高考(文科)数学试卷+参考答案2 2010年海南省高考(文科)数学试卷+参考答案3 2010年海南省高考(文科)数学试卷+参考答案4 2010年海南省高考(文科)数学试卷+参考答案5 2010年海南省高考(文科)数学试卷+参考答案6 2010年海南省高考(文科)数学试卷+参考答案7 2010年海南省高考(文科)数学试卷+参考答案8 2010年海南省高考(文科)数学试卷+参考答案9 2010年海南省高考(文科)数学试卷+参考答案10
已阅读完毕,您还可以下载文档进行保存

《2010年海南省高考(文科)数学试卷+参考答案》是由用户上传到老师板报网,类型是数学试卷,大小为605.5 KB,总共有10页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2010年海南省高考(文科)数学试卷+参考答案文字介绍:2010年普通高等学校招生全国统一考试(海南卷)文科数学参考公式:样本数据12,nxxx的标准差锥体体积公式222121()()()nsxxxxxxn13Vsh其中x为样本平均数其中S为底面面积,h为高柱体体积公式球的表面积,体积公式VSh2344,3SRVR其中S为底面面积,h为高其中R为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知集合2,,|4,|AxxxRBxxxZ,则AB(A)(0,2)(B)[0,2](C)|0,2|(D)|0,1,2|(2)a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于(A)865(B)865(C)1665(D)1665(3)已知复数23(13)izi,则︱z︱=(A)14(B)12(C)1(D)2(4)曲线2y21xx在点(1,0)处的切线方程为(A)1yx(B)1yx(C)22yx(D)22yx(5)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(A)6(B)5(C)62(D)52(6)如图,质点p在半径为2的圆周上逆时针运动,其初始位置为0p(2,2),角速度为1,那么点p到x轴距离d关于时间t的函数图像大致为(7)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(A)3a2(B)6a2(C)12a2(D)24a2(8)如果执行右面的框图,输入N=5,则输出的数等于(A)54(B)45(C)65(D)56(9)设偶函数f(x)满足f(x)=2x-4(x0),则20xfx=(A)24xxx或(B)04xxx或(C)06xxx或(D)22xxx或(10)若sina=-45,a是第一象限的角,则sin()4a=(A)-7210(B)7210(C)2-10(D)210(11)已知ABCD的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在ABCD的内部,则z=2x-5y的取值范围是(A)(-14,16)(B)(-14,20)(C)(-12,18)(D)(-12,20)(12)已知函数f(x)=lg1,01016,02xxxx若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须做答。第(22)题~第(24)题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分。(13)圆心在原点上与直线20xy相切的圆的方程为。(14)设函数()yfx为区间0,1上的图像是连续不断的一条曲线,且恒有01fx,可以用随机模拟方法近似计算由曲线()yfx及直线0x,1x,0y所围成部分的面积S,先产生两组(每组N个)区间0,1上的均匀随机数1,2.....nxxx和1,2.....nyyy,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yi≤f(xi1()(1,2.....)yfxiN的点数1N,那么由随机模拟方法可得S的近似值为___________(15)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的_______(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱(16)在△ABC中,D为BC边上一点,3BCBD,2AD,135ADB.若2ACAB,则BD=________.三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本小题满分12分)设等差数列na满足35a,109a。(Ⅰ)求na的通项公式;(Ⅱ)求na的前n项和nS及使得nS最大的序号n的值。(18)(本小题满分12分)如图,已知四棱锥PABCD的底面为等腰梯形,AB∥CD,ACBD,垂足为H,PH是四棱锥的高。(Ⅰ)证明:平面PAC平面PBD;(Ⅱ)若6AB,APBADB60°,求四棱锥PABCD的体积。请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。(19)(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:(Ⅰ)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(Ⅱ)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。(20)(本小题满分12分)设1F,2F分别是椭圆E:2x+22yb=1(0﹤b﹤1)的左、右焦点,过1F的直线l与E相交于A、B两点,且2AF,AB,2BF成等差数列。(Ⅰ)求AB(Ⅱ)若直线l的斜率为1,求b的值。(21)本小题满分12分)设函数21xxfxeax(Ⅰ)若a=12,求xf的单调区间;(Ⅱ)若当x≥0时xf≥0,求a的取值范围(22)(本小题满分10分)选修4—1:几何证明选讲如图:已知圆上的弧ACBD,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)ACE=BCD。(Ⅱ)2BC=BExCD。(23)(本小题满分10分)选修4-4:坐标系与参数方程已知直线C1:x1tcossinyt(t为参数),C2:xcossiny(为参数),(Ⅰ)当=3时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线。(24)(本小题满分10分)选修4—5:不等式选讲设函数f(x)=24x+1。(Ⅰ)画出函数y=f(x)的图像:(Ⅱ)若不等式f(x)≤ax的解集非空,求n的取值范围2010年普通高等学校招生全国统一考试文科数学参考答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。(1)D(2)C(3)B(4)A(5)D(6)C(7)B(8)D(9)B(10)A(11)B(12)C二:填空题:本大题共4小题,每小题五分,共20分。(13)x2+y2=2(14)1NN(15)①②③⑤(16)2+5三,解答题:接答应写出文字说明,证明过程或演算步骤。(17)解:(Ⅰ)由an=a1+(n-1)d及a3=5,a10=-9得112599{adad解得192{ad数列{an}的通项公式为an=11-2n。……..6分(Ⅱ)由(Ⅰ)知Sn=na1+(1)2nnd=10n-n2。因为Sn=-(n-5)2+25.所以当n=5时,Sn取得最大值。……12分(18)解:(Ⅰ)因为PH是四棱锥P-ABCD的高。所以ACPH,又ACBD,PH,BD都在平面PBD内,且PHBD=H.所以AC平面PBD.故平面PAC平面PBD.……..6分(Ⅱ)因为ABCD为等腰梯形,AB∥CD,ACBD,AB=6.所以HA=HB=3.因为APB=ADB=600所以PA=PB=6,HD=HC=1.可得PH=3.等腰梯形ABCD的面积为S=12ACxBD=2+3.……..9分所以四棱锥的体积为V=13x(2+3)x3=3233……..12分(19)解:(Ⅰ)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中需要帮助的老年人的比例的估计值为7014%500.……4分(Ⅱ)22500(4027030160)9.96720030070430k由于9.9676.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.…………………8分(Ⅲ)由(Ⅱ)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.……12分(20)解:(Ⅰ)由椭圆定义知22F+F又2AB=AFFAB得(Ⅱ)L的方程式为y=x+c,其中21cb设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组222y=x+cx1yb化简得222(1)2120.bxcxb则2121222212,.11cbxxxxbb因为直线AB的斜率为1,所以21xx即21423xx.则22421212222284(1)4(12)8()49(1)11bbbxxxxbbb解得22b.(21)解:(Ⅰ)12a时,21()(1)2xfxxex,\'()1(1)(1)xxxfxexexex。当,1x时\'()fx;当1,0x时,\'()0fx;当0,x时,\'()0fx。故()fx在,1,0,单调增加,在(-1,0)单调减少。(Ⅱ)()(1)afxxxaxex-1-ax)。令()1agxxaxx(ex-1-ax),则\'()xgxea。若1a,则当0,x时,\'()gx,()gx为增函数,而(0)0g,从而当x≥0时()gx≥0,即()fx≥0.若a,则当0,lnxa时,\'()gx,()gx为减函数,而(0)0g,从而当0,lnxa时()gx<0,即()fx<0.综合得a的取值范围为,1(22)解:(Ⅰ)因为=,所以BCDABC.又因为EC与圆相切于点C,故ACEABC所以ACEBCD.……5分(Ⅱ)因为ECBCDB,EBCBCD,所以∆BDC∽∆ECB,故BCCDBEBC.即2BCBECD.……10分(23)解:(I)当3时,C1的普通方程为3(1)yx,C2的普通方程为221xy.联立方程组223(1),1,yxxxy解得C1与C2的交点为(1,0),13(,)22(II)C1的普通方程为sincossin0xy.A点坐标为2(sin,cossin)aaa,故当a变化时,P点轨迹的参数方程为21sin21sincos2xayaa(a为参数)P点轨迹的普通方程为2211()416xy故P点轨迹是圆心为1(,0)4,半径为14的圆(24)解:(Ⅰ)由于xf=25,23,2.xxxx则函数xyf的图像如图所示。……5分(Ⅱ)由函数xyf与函数yax的图像可知,当且仅当2a≥12a或2a时,函数xyf与函数yax的图像有交点。故不等式xfax的解集非空时,2a的取值范围为1,2,2。……10分

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:10页
  • 大小:605.5 KB
  • 编号:8189
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货