2020年高考江苏省数学试卷(原卷word版)

2020年高考江苏省数学试卷(原卷word版)1 2020年高考江苏省数学试卷(原卷word版)2 2020年高考江苏省数学试卷(原卷word版)3 2020年高考江苏省数学试卷(原卷word版)4 2020年高考江苏省数学试卷(原卷word版)5 2020年高考江苏省数学试卷(原卷word版)6 2020年高考江苏省数学试卷(原卷word版)7
已阅读完毕,您还可以下载文档进行保存

《2020年高考江苏省数学试卷(原卷word版)》是由用户上传到老师板报网,类型是数学试卷,大小为505.5 KB,总共有7页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2020年高考江苏省数学试卷(原卷word版)文字介绍:绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积,其中是柱体的底面积,是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合,则_____.2.已知是虚数单位,则复数的实部是_____.3.已知一组数据的平均数为4,则的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出的值为,则输入的值是_____.6.在平面直角坐标系xOy中,若双曲线﹣=1(a>0)的一条渐近线方程为y=x,则该双曲线的离心率是____.7.已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是____.8.已知=,则的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.10.将函数y=的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是____.11.设{an}是公差为d的等差数列,{bn}是公比为q的等比数列.已知数列{an+bn}的前n项和,则d+q的值是_______.12.已知,则的最小值是_______.13.在△ABC中,D在边BC上,延长AD到P,使得AP=9,若(m为常数),则CD的长度是________.14.在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则△PAB面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求的值;(2)在边BC上取一点D,使得,求的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上、桥AB与MN平行,为铅垂线(在AB上).经测量,左侧曲线AO上任一点D到MN的距离(米)与D到的距离a(米)之间满足关系式;右侧曲线BO上任一点F到MN的距离(米)与F到的距离b(米)之间满足关系式.已知点B到的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价(万元)(k>0).问为多少米时,桥墩CD与EF的总造价最低?18.在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.19.已知关于x的函数与在区间D上恒有.(1)若,求h(x)的表达式;(2)若,求k的取值范围;(3)若求证:.20.已知数列的首项a1=1,前n项和为Sn.设λ与k是常数,若对一切正整数n,均有成立,则称此数列为“λ–k”数列.(1)若等差数列是“λ–1”数列,求λ的值;(2)若数列是“”数列,且an>0,求数列的通项公式;(3)对于给定的λ,是否存在三个不同的数列为“λ–3”数列,且an≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.平面上点在矩阵对应的变换作用下得到点.(1)求实数,的值;(2)求矩阵的逆矩阵.B.[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点在直线上,点在圆上(其中,).(1)求,的值(2)求出直线与圆的公共点的极坐标.C.[选修4-5:不等式选讲]23.设,解不等式.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn.(1)求p1·q1和p2·q2;(2)求2pn+qn与2pn-1+qn-1的递推关系式和Xn的数学期望E(Xn)(用n表示).

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:7页
  • 大小:505.5 KB
  • 编号:8237
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货