2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)

2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)1 2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)2 2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)3 2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)4 2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)5
已阅读完毕,您还可以下载文档进行保存

《2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)》是由用户上传到老师板报网,类型是数学试卷,大小为272.5 KB,总共有5页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2020年全国统一高考数学(文科)试卷(新课标Ⅲ)+(原卷版)文字介绍:2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A∩B中元素的个数为()A.2B.3C.4D.52.若,则z=()A.1–iB.1+iC.–iD.i3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为()(ln19≈3)A.60B.63C.66D.695.已知,则()A.B.C.D.6.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线7.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)8.点(0,﹣1)到直线距离的最大值为()A.1B.C.D.29.下图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+210.设a=log32,b=log53,c=,则()A.a0,b>0)的一条渐近线为y=x,则C的离心率为_________.15.设函数.若,则a=_________.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等比数列{an}满足,.(1)求{an}的通项公式;(2)记为数列{log3an}的前n项和.若,求m.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:,P(K2≥k)0.0500.0100.001k3.8416.63510.82819.如图,在长方体中,点,分别在棱,上,且,.证明:(1)当时,;(2)点在平面内.20.已知函数.(1)讨论的单调性;(2)若有三个零点,求的取值范围.21.已知椭圆的离心率为,,分别为的左、右顶点.(1)求的方程;(2)若点在上,点在直线上,且,,求的面积.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(t为参数且t≠1),C与坐标轴交于A,B两点.(1)求||:(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.[选修4-5:不等式选讲]23.设a,b,cR,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥.

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:5页
  • 大小:272.5 KB
  • 编号:8256
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货