2020年北京市高考数学试卷(原卷版)

2020年北京市高考数学试卷(原卷版)1 2020年北京市高考数学试卷(原卷版)2 2020年北京市高考数学试卷(原卷版)3 2020年北京市高考数学试卷(原卷版)4 2020年北京市高考数学试卷(原卷版)5 2020年北京市高考数学试卷(原卷版)6
已阅读完毕,您还可以下载文档进行保存

《2020年北京市高考数学试卷(原卷版)》是由用户上传到老师板报网,类型是数学试卷,大小为429.5 KB,总共有6页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2020年北京市高考数学试卷(原卷版)文字介绍:2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则().A.B.C.D.2.在复平面内,复数对应的点的坐标是,则().A.B.C.D.3.在的展开式中,的系数为().A.B.5C.D.104.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A.B.C.D.5.已知半径为1的圆经过点,则其圆心到原点的距离的最小值为().A.4B.5C.6D.76.已知函数,则不等式的解集是().A.B.C.D.7.设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线().A.经过点B.经过点C.平行于直线D.垂直于直线8.在等差数列中,,.记,则数列().A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项9.已知,则“存在使得”是“”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.2020年3月14日是全球首个国际圆周率日(Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是().A.B.C.D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数的定义域是____________.12.已知双曲线,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.13.已知正方形的边长为2,点P满足,则_________;_________.14.若函数的最大值为2,则常数的一个取值为________.15.为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在这段时间内,甲企业的污水治理能力比乙企业强;②在时刻,甲企业的污水治理能力比乙企业强;③在时刻,甲、乙两企业的污水排放都已达标;④甲企业在这三段时间中,在的污水治理能力最强.其中所有正确结论的序号是____________________.三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体中,E为的中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.17.在中,,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a的值:(Ⅱ)和的面积.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较与的大小.(结论不要求证明)19.已知函数.(Ⅰ)求曲线的斜率等于的切线方程;(Ⅱ)设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值.20.已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.21.已知是无穷数列.给出两个性质:①对于中任意两项,在中都存在一项,使;②对于中任意项,在中都存在两项.使得.(Ⅰ)若,判断数列是否满足性质①,说明理由;(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:6页
  • 大小:429.5 KB
  • 编号:8322
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货