高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》

高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》1 高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》2 高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》3 高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》4 高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》5 高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》6 高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》7
已阅读完毕,您还可以下载文档进行保存

《高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》》是由用户上传到老师板报网,类型是数学试卷,大小为182 KB,总共有7页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

高考文科数学二轮专题复习题《选修模块 专题1 第2讲 导数的综合应用》文字介绍:重点难点突破(选修模块)专题一 导数及其应用第2讲 导数的综合应用(建议用时:70分钟)一、选择题1.已知函数f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,则实数m的取值范围是(  ).A. B.C.(-∞,2] D.(-∞,2)解析 f′(x)=x2-4x,由f′(x)>0,得x>4或x<0.∴f(x)在(0,4)上递减,在(4,+∞)上递增,∴当x∈[0,+∞)时,f(x)min=f(4).∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥.答案 A2.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)图象,则f(-1)等于(  ).A. B.-C. D.-或解析 ∵f′(x)=x2+2ax+a2-1,∴f′(x)的图象开口向上,则②,④排除.若图象不过原点,则f′(x)的图象为①,此时a=0,f(-1)=;若图象过原点,则f′(x)的图象为③,此时a2-1=0,又对称轴x=-a>0,∴a=-1,∴f(-1)=-.答案 D3.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式ex·f(x)>ex+1的解集为(  ).A.B.C.D.解析 构造函数g(x)=ex·f(x)-ex,因为g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,所以g(x)=ex·f(x)-ex为R上的增函数.又因为g(0)=e0·f(0)-e0=1,所以原不等式转化为g(x)>g(0),解得x>0.答案 A4.(2013·新课标全国Ⅱ卷)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0解析 若c=0,则有f(0)=0,所以A正确.函数f(x)的解析式可以通过配方的方法化为形如(x+m)3+n(x+m)+h的形式,通过平移函数图象,函数的解析式可以化为y=x3+nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,所以B正确;由三次函数的图象可知,若x0是f(x)的极小值点,则极大值点在x0的左侧,所以函数在区间(-∞,x0)单调递减是错误的,D正确.选C.答案 C5.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的00,f(x2)>-B.f(x1)<0,f(x2)<-C.f(x1)>0,f(x2)<-D.f(x1)<0,f(x2)>-解析 f′(x)=lnx-2ax+1,依题意知f′(x)=0有两个不等实根x1,x2.即函数g(x)=lnx+1与函数h(x)=2ax有两个不同交点x1,x2,如图由直线y=x是曲线g(x)=lnx+1的切线,可知,0<2a<1,且00,当x>x2时,f′(x)<0,∴f(x2)>f(1)=-a>-,故选D.答案 D8.(2013·安徽卷)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是(  ).A.3 B.4  C.5 D.6解析 因为函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,可知关于导函数的方程f′(x)=3x2+2ax+b有两个不等的实根x1,x2,则方程3(f(x))2+2af(x)+b=0有两个不等的实根,即f(x)=x1或f(x)=x2,原方程根的个数就是这两个方程f(x)=x1和f(x)=x2的不等实根的个数之和,若x1x2,如图2同理方程3(f(x))2+2af(x)+b=0有三个不同实根.答案 A二、填空题9.(2014·温州模拟)关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0,得x1=0,x2=2.当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以解得-4<a<0.答案 (-4,0)10.若函数f(x)=-x2+4x-3lnx在[t,t+1]上不单调,则t的取值范围是______.解析 对f(x)求导,得f′(x)=-x+4-==-.由f′(x)=0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,所以t<10,因此函数f(x)在[0,1]上单调递增,所以x∈[0,1]时,f(x)min=f(0)=-1.根据题意可知存在x∈[1,2],使得g(x)=x2-2ax+4≤-1,即x2-2ax+5≤0,即a≥+能成立,令h(x)=+,则要使a≥h(x)在x∈[1,2]能成立,只需使a≥h(x)min,又函数h(x)=+在x∈[1,2]上单调递减(可利用导数判断),所以h(x)min=h(2)=,故只需a≥.答案 三、解答题12.某种产品每件成本为6元,每件售价为x元(60;当x∈(9,11)时,y′<0.∴函数y=-2x3+33x2-108x-108在(6,9)上是单调递增,在(9,11)上是单调递减.∴当x=9时,y取最大值,且ymax=135,∴售价为9元时,年利润最大,最大年利润为135万元.13.(2014·全国大纲卷)函数f(x)=ax3+3x2+3x(a≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a的取值范围.解 (1)f′(x)=3ax2+6x+3,f′(x)=0的判别式Δ=36(1-a).①若a≥1,则f′(x)≥0,且f′(x)=0,当且仅当a=1,x=-1,故此时f(x)在R上是增函数.②由于a≠0,故当a<1时,f′(x)=0有两个根.x1=,x2=.若00,故f(x)分别在(-∞,x2),(x1,+∞)是增函数;当x∈(x2,x1)时,f′(x)<0,故f(x)在(x2,x1)是减函数.若a<0,则当x∈(-∞,x1)或(x2,+∞)时,f′(x)<0,故f(x)分别在(-∞,x1),(x2,+∞)是减函数;当x∈(x1,x2)时,f′(x)>0,故f(x)在(x1,x2)是增函数.(2)当a>0,x>0时,f′(x)=3ax2+6x+3>0,故当a>0时,f(x)在区间(1,2)是增函数.当a<0时,f(x)在区间(1,2)是增函数当且仅当f′(1)≥0且f′(2)≥0,解得-≤a<0.综上,a的取值范围是∪(0,+∞).14.(2014·新课标全国Ⅱ卷)已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.(1)解 f′(x)=3x2-6x+a,f′(0)=a.曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.由题设得-=-2,所以a=1.(2)证明 由(1)知,f(x)=x3-3x2+x+2.设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.由题设知1-k>0.当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)单调递减,在(2,+∞)单调递增,所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0,+∞)没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.15.(2013·新课标全国Ⅱ卷)已知函数f(x)=ex-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.(1)解 f′(x)=ex-,由x=0是f(x)的极值点,得f′(0)=0,所以m=1,于是f(x)=ex-ln(x+1),定义域为{x|x>-1},f′(x)=ex-,函数f′(x)=ex-在(-1,+∞)上单调递增,且f′(0)=0,因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明 当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0,当m=2时,函数f′(x)=ex-在(-2,+∞)上单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时f(x)取得最小值.由f′(x0)=0,得ex0=,即ln(x0+2)=-x0,故f(x)≥f(x0)=+x0=>0.综上,当m≤2时,f(x)>0.

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:7页
  • 大小:182 KB
  • 编号:8458
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货