广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案

广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案1 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案2 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案3 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案4 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案5 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案6 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案7 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案8 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案9 广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案10
试读已结束,还剩3页未读,您可下载完整版后进行离线阅读

《广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案》是由用户上传到老师板报网,类型是数学试卷,大小为425.5 KB,总共有13页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

广东省佛山市第一中学2012届高考数学(理科)模拟试卷+答案文字介绍:广东省佛山市第一中学2012届高考模拟试卷数学(理科)命题人:祁润祥.2012.5本试题共4页,21小题,满分150分,考试用时120分钟。一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-1,0,1},{|124}xBx,则A∩B等于 A.{1}   B.{-1,1}  C.{1,0} D.{-1,0,1}2.如图是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若80分以上为优秀,根据图形信息可知:这次考试的优秀率为A.25%B.30%C.35%D.40%3.给出如下四个命题:①若“p且q”为假命题,则p、q均为假命题;②命题“若ab,则221ab”的否命题为“若ab,则221ab”;③“2,11xxR”的否定是“2,11xxR”;④若,则1E.其中不正确的命题的个数是A.4B.3C.2D.14.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形.若三棱柱的正视图(如图所示)的面积为8,则侧视图的面积为A.8B.4C.43D.35.已知平面向量、为三个单位向量,且.满足(),则x+y的最大值为A.1B.C.D.26.设F是抛物线C1:y2=2px(p>0)的焦点,点A是抛物线与双曲线C2:22221xyab(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为A.5B.3C.52D.27.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已正视图11知总营业收入R与年产量x的关系是R=R(x)=214000400280000400xxxx则总利润最大时,每年生产的产品数是A.100B.150C.200D.3008.设102m,若1212kmm恒成立,则k的最大值为A.6B.7C.8D.9二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.计算:34|2|xdx=__________.10.已知cos31°=m,则sin239°·tan149°的值是________11.若xy、满足不等式组5030xyxxyk时,恒有246xy,则k的取值范围是___.12.在1,2,3,4,5,6,7的任一排列1234567,,,,,,aaaaaaa中,使相邻两数都互质的排列方式共有________种.(用数字作答)13.设M1(0,0),M2(1,0),以M1为圆心,|M1M2|为半径作圆交x轴于点M3(不同于M2),记作⊙M1;以M2为圆心,|M2M3|为半径作圆交x轴于点M4(不同于M3),记作⊙M2;……;以Mn为圆心,|MnMn+1|为半径作圆交x轴于点Mn+2(不同于Mn+1),记作⊙Mn;……当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn.考察下列论断:当n=1时,|A1B1|=2;当n=2时,|A2B2|=15;当n=3时,|A3B3|=23354213+-;当n=4时,|A4B4|=34354213--;……由以上论断推测一个一般的结论:对于n∈N*,|AnBn|=.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)直线112,:2xtlytt为参数与ADBOCE直线22cos,:sinxslyss为参数平行,则直线2l的斜率为.14..(几何证明选讲选做题)如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则AECE_______________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)若23()3cossincos(0)2fxxxx的图像与直线)0(mmy相切,并且切点横坐标依次成公差为的等差数列.(1)求和m的值;(2)在⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边。若0)2A(,是函数)(xf图象的一个对称中心,且a=4,求⊿ABC外接圆的面积。17.(本小题满分12分)某地农民种植A种蔬菜,每亩每年生产成本为7000元,A种蔬菜每亩产量及价格受天气、市场双重影响,预计明年雨水正常的概率为,雨水偏少的概率为.若雨水正常,A种蔬菜每亩产量为2000公斤,单价为6元/公斤的概率为,单价为3元/公斤的概率为;若雨水偏少,A种蔬菜每亩产量为1500公斤,单价为6元/公斤的概率为,单价为3元/公斤的概率为.(1)计算明年农民种植A种蔬菜不亏本的概率;(2)在政府引导下,计划明年采取“公司加农户,订单农业”的生产模式,某公司未来不增加农民生产成本,给农民投资建立大棚,建立大棚后,产量不受天气影响,因此每亩产量为2500公斤,农民生产的A种蔬菜全部由公司收购,为保证农民的每亩预期收入增加1000元,收购价格至少为多少?18.(本小题满分14分)如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=(1)证明:平面ACD⊥平面ADE;(2)当AC=x时, V(x)表示三棱锥A-CBE的体积,当V(x)取得最大值时,求直线AD与平面ACE所成角的正弦值。19.(本题满分14分)已知:函数在点(0,)处的切线与x-y-1=0平行,且g(2)=,若为g(x)的导函数,设函数.(1)求a、b的值及函数)(xf的解析式;(2)如果关于x的方程0)3124()12(xxtf有三个相异的实数根,求实数t的取值范围.20(本题满分14分)已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为.(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率的值;(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(2)设直线与轴、轴分别交于点,问当点P在椭圆上运动时,是否为定值?请证明你的结论.21.(本题满分14分)设二次函数)()4()(2Rkkxxkxf,对任意实数x,有26)(xxf恒成立;数列}{na满足)(1nnafa.(1)求函数)(xf的解析式和值域;(2)试写出一个区间),(ba,使得当),(1baa时,数列}{na在这个区间上是递增数列,并说明理由;(3)已知311a,是否存在非零整数,使得对任意nN,都有12333312111logloglog12log1111222nnnaaa2log2)1(131nn恒成立,若存在,求之;若不存在,说明理由.广东省佛山市第一中学2012届高考模拟试题数学(理科)答案一.选择题CBCCBADC;3.答:C.【解析】②④正确4.答:C【解析】设正视图的一边长为a,则28a,所以4a.侧视图是一个矩形,一边长为4,另一边是三棱柱底面等边三角形的高,为,所以侧视图的面积为.故选C.5.答B;【解析一】∵∴∴,要使x+y最大,必须使得x>0,y>0,那么即x+y≤当且仅当x=y=时达到最大值。【解法二】:可设,那么x+y=6.答;【解析】依题意:A点的横坐标为,把代入双曲线渐近线方程得A点纵坐标为即|AF|=,又因为|AF|=P,那么,即,那么双曲线离心率e=7.D【解析】 由题意得,总成本函数为C=C(x)=20000+100x,所以总利润函数为P=P(x)=R(x)-C(x)=而P′(x)=令P′(x)=0,得x=300,易知x=300时,P最大.8.C【解析】由题可知k的最大值即为1212mm的最小值.又1212mm22122()[2(12)]22()28212212mmmmmmmm,取等号的条件是当且仅当212mm,即14m,故k的最大值为8.故选C.二.填空题:9.;10.;11.k≥0;12.864;13.312)1(43511nnn14.;15.10.答:;解析 sin239°·tan149°=sin(270°-31°)·tan(180°-31°)=-cos31°·(-tan31°)=cos31°·tan31°=sin31°==,故选B.11.答:k≥0;【解析】依题意,不等式组表示的区域如图(1),(2)中阴影部分所示,其中A点坐标是方程组解为则A((3,-3),B(3,8),DE直线方程为x+y-k=0,它与x=3的交点D的坐标为(3,k-3)因为不等式2x+4y≥-6解的区域是直线2x+4y=-6把坐标平面分成的两个半平面中的斜上半平面。那么,要使区域使得2x+4y≥-6恒成立,就是要区域内的所有点(x,y)都要在直线2x+4y=-6的斜上方,只要使k-3≥-3即k≥012.答:864;【解析】先让数字1,3,5,7作全排列,有4424A种,再排数字6,由于数字6不与3相邻,在排好的排列中,除3的左、右2个空隙,还有3个空隙可排数字6,故数字6[来有3种排法,最后排数字2,4,在剩下的4个空隙中排上2,4,有24A种排法,共有42443864AA种.三.解答题16.(12分)解:(1)23()3cossincos2fxxxx=sin(2)3x……………3分由题意,函数)(xf的周期为,且最大值为m,所以,1,1m………………………………6分(2)∵(0)2A,是函数)(xf图象的一个对称中心∴0)3sin(A,又因为A为⊿ABC的内角,所以3A………………………7分⊿ABC中,设外接圆半径为R,则由正弦定理得:3383sin4sina2AR,即:334R第11题图(1)第11题图(2)则⊿ABC的外接圆面积3162RS………………………………12分17.(12分)解:(1)只有当价格为6元/公斤时,农民种植A种蔬菜才不亏本所以农民种植A种蔬菜不亏本的概率是21127343318P;……………………6分(2)按原来模式种植,设农民种植A种蔬菜每亩收入为元,则可能取值为:5000,2000,-1000,-2500.211(5000)346P,122(2000)339P,2311000342P,1112500339P,……………………………………………………………10分121150002000100025006929E500,……………………………11分设收购价格为a元/公斤,农民每亩预期收入增加1000元,则250070001500a,即3.4a,所以收购价格至少为3.4元/公斤.………………12分18.(14分)解:(1)证明:∵四边形DCBE为平行四边形,∴CD//BE,BC//DE…1分∵DC⊥平面ABC,BC平面ABC∴DC⊥BC……2分∵AB为圆O的直径,∴BC⊥AC且DCAC=C∴BC⊥平面ADC……3分∵DE//BC∴DE⊥平面ADC……4分又∵DE平面ADE∴平面ACD⊥平面ADE……5分(2)∵DC⊥平面ABC,CD//BE∴BE⊥平面ABC∵AB平面ABC∴BE⊥AB……6分在Rt△ABE中,由=,AB=2得BE=……7分在Rt△ABC中,∵……8分∴=≤∵∴当且仅当即∈(0,2)时“=”成立即当V(x)取得最大值时AC=,这时△ABC为等腰直角三角形……10分方法一:易证AC⊥平面BCDE时所以平面ACE⊥平面BCDE……11分过点D作DH⊥CE,则DH⊥平面ACE连结HA则∠DAH为直线AD与平面ACE所成角……12分那么sin∠DAH==……13分故直线AD与平面ACE所成角的正弦值为……14分方法二建立空间直角坐标系,C(0,0,0),A(,0,0),E(0,,),D(0,0,),0,)设平面AEC的法向量为n=(x,y,z),那么令z=,得n=(0,-,),……12分设AD与平面ACE所成角为,那么sin=cos<……13分故直线AD与平面ACE所成角的正弦值为……14分19.(14分)解:(1),,因为g(x)在x=0处的切线与x-y-1=0平行,那么切线的斜率为1则那么即a=又∵g(2)=即a+b=则b=那么,∴则a=,21)(xxxf…………5分(2)0)3124()12(xxtf,即02312412112ttxxx.令012xu,则0)14()23(2tutu)(…………8分记方程)(的根为1u、2u,当2110uu时,原方程有三个相异实根,10分记)14()23()(2tutuu,由题可知,0)1(014)0(tt或122300)1(014)0(ttt.…………13分041t时满足题设.…………14分φ(u)20(14分)解:(1)(ⅰ)∵圆过椭圆的焦点,圆:,∴,∴,,∴.……4分(ⅱ)由及圆的性质,可得,∴∴∴,.……8分(2)设0,则,整理得∴方程为:,9分方程为:.……10分从而直线AB的方程为:.……11分令,得,令,得,……12分∴,……13分∴为定值,定值是.……14分21.(14分)解:(1)由26)(xxf恒成立等价于02)6()4(2xkxk恒成立,…1分从而得:0)4(8)6(042kkk,化简得0)2(42kk,从而得2k,……2分所以xxxf22)(2………………3分其值域为]21,(.………………4分(2)解:当)21,0(1a时,数列}{na在这个区间上是递增数列,证明如下:设1),21,0(nan,则)21,0(21)21(222)(221nnnnnaaaafa,所以对一切*Nn,均有)21,0(na;………………7分81)41(222)(221nnnnnnnnaaaaaafaa081)41(281)41(2161)41(414141)21,0(222nnnnnaaaaa从而得01nnaa,即nnaa1,所以数列}{na在区间)21,0(上是递增数列.…………10分注:本题的区间也可以是)21,51[、)21,41[、)21,31[等无穷多个.另解:若数列}{na在某个区间上是递增数列,则01nnaa即0222)(221nnnnnnnnnaaaaaaafaa)21,0(na………7分又当1),21,0(nan时,)21,0(21)21(222)(221nnnnnaaaafa,所以对一切*Nn,均有)21,0(na且01nnaa,所以数列}{na在区间)21,0(上是递增数列.………………10分(3)由(2)知)21,0(na,从而)21,0(21na;2221)21(22122)22(2121nnnnnnaaaaaa,即21)21(221nnaa12分令nnab21,则有212nnbb且)21,0(nb;从而有2lglg2lg1nnbb,可得)2lg(lg22lglg1nnbb,所以数列}2lg{lgnb是31lg2lglg1b为首项,公比为2的等比数列,……………………………………………14分从而得12131lg231lg2lglgnnnb,即231lglg12nnb,所以11223121231nnnb,所以12321211nnnba,所以1323322log)32(log211log1nnna,所以,naaa211log211log211log3231312log221212log33nnnn.…………………………………………13分即12log23nn12332(log2)112log1nnnn12log3n,所以,1121nn恒成立(1)当n为奇数时,即12n恒成立,当且仅当1n时,12n有最小值1为。1(2)当n为偶数时,即12n恒成立,当且仅当2n时,有最大值2为。2所以,对任意nN,有21。又非零整数,1………………………14分

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:13页
  • 大小:425.5 KB
  • 编号:9091
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货