2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)

2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)1 2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)2 2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)3 2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)4 2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)5
已阅读完毕,您还可以下载文档进行保存

《2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)》是由用户上传到老师板报网,类型是数学试卷,大小为159 KB,总共有5页,格式为doc。授权方式为VIP用户下载,成为老师板报网VIP用户马上下载此课件。文件完整,下载后可编辑修改。更多关于请在老师板报网直接搜索

2011年高考一轮课时训练(理)10.3抛物线+参考答案(通用版)文字介绍:第三节 抛物线题号12345答案一、选择题1.(2010年韶关一模)若抛物线y2=2px(p>0)的焦点与双曲线-=1的右焦点重合,则p的值为(  )A.2           B.4C.8D.42.(2010年辽宁卷)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为(  )A.B.3C.D.3.(2010年梧州模拟)抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是(  )A.B.C.D.34.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是(  )A.B.[-2,2]C.[-1,1]D.[-4,4]5.(2010年全国卷Ⅱ)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=(  )A.B.C.D.二、填空题6.(2010年宁夏海南卷)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A、B两点.若AB的中点为(2,2),则直线l的方程为________.7.(2010年福建卷)过抛物线y2=2px(p>0)的焦点F作倾角为45°的直线交抛物线于A、B两点,若线段AB的长为8,则p=________.8.对于顶点在原点的抛物线,给出下列条件:①焦点在y轴上 ②焦点在x轴上 ③抛物线上横坐标为1的点到焦点的距离等于6 ④抛物线的通径的长为5⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1)能使这个抛物线方程为y2=10x的条件是________.(要求填写合适条件的序号)三、解答题9.(2010年揭阳联考)已知M(0,-2),点A在x轴上,点B在y轴的正半轴,点P在直线AB上,且满足AP=PB,MA·AP=0.(1)当点A在x轴上移动时,求动点P的轨迹C的方程;(2)过(-2,0)的直线l与轨迹C交于E、F两点,又过E、F作轨迹C的切线l1、l2,当l1⊥l2,求直线l的方程.10.(2010年山东卷)如右图所示,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A、B.(1)求证:A、M、B三点的横坐标成等差数列;(2)已知当M点的坐标为(2,-2p)时,=4,求此时抛物线的方程;参考答案1.C2.解析:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F,依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|==.答案:A3.解析:设抛物线y=-x2上一点为(m,-m2),该点到直线4x+3y-8=0的距离为,当m=时,取得最小值为,故选A.答案:A4.解析:∵y2=8x,∴Q(-2,0)(Q为准线与x轴的交点),设过Q点的直线l方程为y=k(x+2).∵l与抛物线有公共点,∴方程组有解,即k2x2+(16k2-8)x+64k2=0有解.∴Δ=(16k2-8)2-4k2×64k2≥0,即k2≤.∴-≤k≤.答案:A5.解析:设抛物线C:y2=8x的准线为l:x=-2直线y=k(k+2)(k>0)恒过定点P(-2,0),如图所示过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点,连结OB.|OB|=|AF|,∴|OB|=|BF|点B的横坐标为1,故点B的坐标为(1,2),∴k==,选D.答案:D6.解析:抛物线的方程为y2=4x,A(x1,y2),B(x2,y2),则有x1≠x2,.两式相减得,y-y=4(x1-x2),∴==1.∴直线l的方程为y-2=x-2,即y=x.答案:y=x7.解析:由题意可知过焦点的直线方程为y=x-,联立有⇒x2-3px+=0,又|AB|==8⇒p=2.答案:28.解析:由抛物线方程y2=10x可知②⑤满足条件.答案:②⑤9.解析:(1)设P(x,y),A(xA,0),B(0,yB)(yB>0)则AP=(x-xA,y),PB=(-x,yB-y),由AP=PB得xA=2x,yB=2y,又MA=(xA,2),AP=(x-xA,y),即MA=(2x,2),AP=(-x,y),由MA·AP=0得x2=y(y>0).(2)显然直线l的斜率存在,设直线l的方程为:y=k(x+2),设E(x1,y1),F(x2,y2),因为y′=2x,故两切线的斜率分别为2x1,2x2.由方程组得x2-kx-2k=0,所以x1+x2=k,x1·x2=-2k,当l1⊥l2时,2x1·2x2=-1,所以k=.所以,直线l的方程是y=(x+2).10.解析:(1)证明:由题意设A,B,x1<x2,M(x0,-2p).由x2=2py得y=,得y′=,所以kMA=,kMB=.因此直线MA的方程为y+2p=(x-x0),直线MB的方程为y+2p=(x-x0).所以+2p=(x1-x0),①+2p=(x2-x0).②由①、②得=x1+x2-x0,因此x0=,即2x0=x1+x2.所以A、M、B三点的横坐标成等差数列.(2)由(1)知,当x0=2时,将其代入①、②并整理得:x-4x1-4p2=0,x-4x2-4p2=0,所以x1,x2是方程x2-4x-4p2=0的两根,因此x1+x2=4,x1x2=-4p2,又kAB===,所以kAB=.由弦长公式得==.又=4,所以p=1或p=2,因此所求抛物线方程为x2=2y或x2=4y.

关键字:

单价:4.99 会员免费
开通会员可免费下载任意资料
  • 页数:5页
  • 大小:159 KB
  • 编号:9327
  • 类型:VIP资料
  • 格式:doc
  • 提示:数字产品不支持退货